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Abstract

The purpose of the present work was to propose a commercially viable method for the 
reduction of flatulence-inducing Raffinose Family Oligosaccharides (RFOs) in soybean 
mature seed- and sprout-flours. For the same, the industrial application of purified food-grade 
α-galactosidase (α-GAL) from Aspergillus niger was evaluated by calorimetric and high-
performance liquid chromatography (HPLC) methods. From mature seed to sprout formation 
with ~80% germination at a pilot-scale, an inherent decline of 76-80% in total RFOs [with a 
respective decline of 84%, 79% and 64% in corresponding raffinose (RAF), stachyose (STA) 
and verbascose (VER) content] was observed. Following treatment with exogenous food-grade 
α-GAL at an optimised level, a significant reduction of 98-99% and 93-96% in total RFOs (with 
a respective decline of 95%, 99%, 100% and 84%, 99%, 80% in corresponding RAF, STA and 
VER content) was observed in mature seed- and sprout-flours, respectively. Herein we reported 
for the first time, a simple and sequential combination of two processing methods (sprouting 
followed by α-GAL hydrolysis) that could open up the commercial use of soybean flour to 
feed- and food-industries to take advantage of its functional and nutritional properties, without 
any anti-nutritional problems usually associated with it. The results from the present work 
could also be extended to other agronomical important legumes, thereby offering promising 
revenue for the large-scale production of nutritionally enriched and RFOs-free flours- and 
-products thereof. 

Introduction

Soybean [Glycine max (L.) Merr.], widely 
regarded as “miracle/wonder/gold bean”, represents 
a leguminous seed crop of tremendous economic 
importance. Being a rich source of high quality 
protein with all eight essential amino acids, oil, 
saccharides, vitamins, fibre, essential fatty acids, 
phytochemicals and lecithins (Singh et al., 2008), 
soybean nutritional quality has been well recognised 
and appreciated globally. In the last decade, the world 
soybeans production has increased significantly from 
200 million MT in 2005 to 324 million MT in 2016 
(USDA, 2016). Soybean consumption is determined 
mainly by its oil (20%), protein (40%) and soluble 
carbohydrate content (15%) (Singh et al., 2008). 
Soy-based food products provide a range of health 
benefits to consumers and is highly recommended 
by nutritionists/medical doctors mainly due to 
their hypo-lipidemic, anti-cholestrolemic and anti-
atherogenic properties as well as their ability to 

reduce allergenicity and reduced risk of osteoporosis, 
prostate/breast cancer, cardiovascular and most 
hormone-associated health disorders (Asif and 
Acharya, 2013; Ahmad et al., 2014; Sharma and 
Baluja, 2015). However, despite being rich in 
all the essential nutrients and health benefits, its 
limited human consumption is influenced in parts 
by the indigestible flatulence causing raffinose 
family oligosaccharides (RFOs), primarily raffinose 
(RAF), stachyose (STA) and verbascose (VER) 
(Calloway and Murphy, 1968; Cristofaro, Mottu and 
Wuhrmann, 1974; Rackis, 1981). RFOs, being major 
sugar components in different varieties of legume 
seeds, have also been the object of many studies, 
and gained considerable attention by biochemists 
and nutritionists alike (Cerning-Beroard and Filiatre, 
1976; Silva et al., 1990; Muzquiz et al., 1999; 
Muehlbauer, 2002; Martı́nez-Villaluenga et al., 2005; 
Giannoccaro et al., 2006; Kotiguda et al., 2007; 
Xiaoli et al., 2008; Aguilera et al., 2009; Kumar et 
al., 2010). 

Keywords

Soybean, sugars 
RFOs 
Anti-nutritional factors 
HPLC

Article history

Received: 8 September, 2017
Received in revised form: 
26 February, 2018
Accepted: 20 June, 2018



106 Raman, M., Saiprasad, G. V. S. and Madhavakrishna, K. /IFRJ 26(1) :105 - 116

RFOs are considered anti-nutritional units mainly 
due to the lack of α-galactosidase or melibiase (α-D-
galactoside galactohydrolase, EC 3.2.1.22) in the 
gut of mono-gastric animals (Kotiguda et al., 2007). 
α-galactosidase (α-GAL) hydrolyses the terminal 
non-reducing α-D-galactose residues from the α-D-
galactosides including galactose oligosaccharides 
(melibiose and RFOs) and branched polysaccharides 
[galactomannans and galacto-(gluco-) mannans] in 
an exo-fashion, thereby liberating the simple sugars 
(Naumoff, 2004). The predominant and relative large 
molecules of RFOs i.e. RAF and STA belonging 
to a class of fibres called FODMAPs (Fermentable 
Oligo-, Di-, Mono-saccharides and Polyols) remain 
undigested, enter the large intestine wherein they 
are fermented by native microbial flora thereby 
producing gases (CO2, H2 and to a lesser extent CH4), 
resulting in the characteristic features of flatulence 
namely bloating, pain, nausea, cramps, diarrhoea, 
abdominal rumbling, social discomfort associated 
with the ejection of rectal gas and further worsen 
the symptoms of irritable bowel syndrome (IBS), a 
common digestive disorder (Cristofaro et al., 1974; 
Messina, 1999; Tsangalis and Shah, 2004). As a 
prophylaxis measure, commercially available dietary 
supplements of α-GAL such as Beano (AkPharma 
Inc, Pleasantville, NJ), has been recommended to 
improve the digestion and reduce the flatulence 
caused by the consumption of legumes.   

The removal of soybean RFOs reduces the 
flatulence considerably (Suarez et al., 1999) and also 
increases the metabolisable energy of the diet (Coon 
et al., 1990; Sebastian et al., 2000). Conventional 
domestic processing methods such as soaking, 
boiling, cooking, roasting, toasting, parching, 
frying, steaming, gamma-radiation, ultrasonic, high 
hydrostatic pressure, fermentation and sprouting have 
been adopted, depending upon tradition and taste 
preferences, to reduce the RFOs levels in legumes. 
Soaking is the easiest, but also most ineffective way 
of reducing the RFOs (33.3% and 46.6% reduction 
in RAF and STA, respectively) in soybean (Han 
and Baik, 2006). Ultrasound (47 MHz) and high 
hydrostatic pressure (621 MPa) applications were 
reported to be relatively more effective (with 55.7%, 
33.9% and 28.6%, 7.4% reduction in corresponding 
RAF and STA, respectively) by promoting the 
enhanced leaching of RFOs (Han and Baik, 2006). 
Cooking and autoclaving of pre-soaked soybean 
resulted in losses of 13%, 8%, 78% and 12%, 11%, 
81% in RAF, STA and VER contents, respectively 
(Ramadan, 2012). By combination of soaking, de-
hulling, washing and cooking, >50% of total RFOs 
can be removed (Egounlety and Aworh, 2003). 

Fermentation with Rhizopus oligosporus resulted in 
>50% and >80% reduction in soybean RAF and STA 
content, respectively (Egounlety and Aworh, 2003). 
In raw, cooked and roasted soybean, fermentation 
with Lactobacillus plantarum resulted in a respective 
losses of RAF by 28%, 58%, 68% and STA by 30%, 
72%, 76% (Adeyemo and Onilude, 2014). Low 
RFOs meal from genetically modified soybeans 
also represents another way of reduction of RFOs in 
the diet (Parsons, Zhang and Araba, 2000). Among 
all these methods, soybean germination represent a 
cost-effective way of reducing RAF and STA content 
by 75% and 87%, respectively (Silva et al., 1990). 
However, so far none of the aforementioned methods 
are commercially viable as well as full-proof enough 
to completely eliminate RFOs levels in soybean and 
other legumes. α-GAL from various other sources 
such as bacteria, fungi, plants and animals (Keller and 
Pharr, 1996; Matsuura et al., 1998; Marraccini et al., 
2005; Cao et al., 2007; Cao et al., 2010) draws a lot of 
interest in the scientific community around the world 
by offering a promising solution in the elimination 
of RFOs from legume flours (Somiari and Balogh, 
1993; 1995). Nevertheless aside from circumstantial 
evidence reported only under laboratory conditions, 
a practical utilisation of crude α-GAL in legumes is 
very scarce. Notably, Matella et al (2005) proposed a 
commercial removal of STA and VER from legume 
(Phaseolus vulgaris) flours. However, their method 
relies on the cumbersome extraction of soluble 
sugars from beans, followed by α-GAL treatment and 
addition of reduced RFOs sugars back to the bean 
slurry prior to drying and milling, without taking 
care of improvements in other nutritional parameters. 
With an intent of viable commercial perspective, 
herein we described the evaluation and enzymatic 
(food-grade α-GAL from A. niger) reduction of RFOs 
components i.e. RAF, STA and VER in both soybean 
mature seed- and sprout-flours at a pilot-scale. To 
the best of our knowledge, this novel information 
(sprouting followed by α-GAL hydrolysis) could 
also stimulate the application of these inexpensive 
and easy methods for industrial-scale production of 
nutritionally enriched and RFOs-free flours from 
other legumes.

Materials and methods

Chemicals
α-GAL (10,000 GAL units/g) in industrial 

quantity was purchased from Alferm Biotec, 
Bengaluru, India. The activity of this product was 
maintained by the vendor on a periodic lot-to-
lot basis by performing a standard α-GAL assay. 



Raman, M., Saiprasad, G. V. S. and Madhavakrishna, K. /IFRJ 26(1) :105 - 116 107

One GAL unit is defined as the amount of enzyme 
required to liberate p-nitrophenol from synthetic 
substrate p-nitrophenyl-α-D-galactopyranoside 
(PNPG) at the rate of 1.0 μmol/min at pH 6.5 at 
37°C under the standard assay conditions. Raffinose/
Sucrose/D-Glucose assay kit (Catalog#K-RAFGL) 
was procured from Megazyme International Ltd., 
Ireland (Wicklow, Ireland). HPLC-grade sugar 
standards: D-(+)-glucose (Catalog#G8270), sucrose 
(Catalog#S7903), D-(+)-raffinose (Catalog#R0514), 
stachyose (Catalog#S4001) and verbascose 
(Catalog#56217) were procured from Sigma-
Aldrich (Sigma Chemical Co., St. Louis, USA). 
Sugar-pak I chromatographic column, 10 µm, 6.5 
× 300 mm (Part No. WAT085188) was purchased 
from Waters Corporation (Waters India Pvt. Ltd.). 
Ethylenediaminetetraacetic acid calcium disodium 
salt (Catalog#ED2SC) and other analytical reagents 
(AR) grade chemicals used in the present work were 
obtained from Sigma-Aldrich (St. Louis, MO, USA).

Seed material and sprouting conditions
Seeds of soybean (Glycine max (L.) Merr.) 

‘JS9560’ (a popular commercial variety in Central 
India), procured from ICAR-Indian Institute of 
Soybean Research (IISR), Indore (Madhya Pradesh) 
were used in the present work. Soybean seeds were 
cleaned thoroughly to make them free from dust, 
dirt, stubbles and foreign matters. Damaged and 
immature/broken seeds with cracked hull were 
discarded mechanically. Cleaned and mechanically-
sorted seeds were surface-sterilised with 0.5% (w/v) 
sodium hypochlorite (NaClO) solution for 10 min, 
and rinsed thoroughly with running distilled water to 
remove any traces of NaClO. Approximately 5 kg of 
cleaned and surface-sterilised seeds per batch were 
soaked in 25 L potable water for 4 h under constant 
shaking at 10 rpm in a customised motor seed 
dressing drum (GMW, Ambala, India), followed by 
drainage of water and rinsing with distilled water. The 
seeds were subsequently distributed evenly on filter 
paper in a single layer in sterile germination trays. 
Each germination tray was wrapped with a muslin 
clothes (to allow entry of oxygen for the germinating 
seed while minimising the contamination during 
the test-period), and placed in the customised seed 
germinator [ACM-78093-S, Acmas technologies 
Pvt. Ltd., India] at 30°C with 90% relative humidity 
(RH) for 72 h (Agrahar-Murugkar and Jha, 2009). 
Germination trays were watered daily according to 
its requirement with distilled water during the course 
of germination. Physiological germination in terms 
of visible radical protrusion of at least 2 mm (ISTA, 
2012) was assessed each day over a test period of 3 
d. The experiment was performed in three replicates. 

Soybean flour preparation 
Sprouts obtained after germination test period 

were subjected to drying in an hot air oven incubator 
(Inlab, Chennai, India; 230 volt, 5.4A) at 55°C to a 
final moisture content of 6-8%, a level recommended 
for the production of soyflour (Gandhi, 2008). Mature 
seeds and dried sprouts were milled to a fine powder 
using analytical grinder mill, passed through a 0.6 
mm sieve to obtain flour of 500 μm particle size. The 
obtained fine flours were stored as a powder in tightly 
closed containers at room temperature till further use. 

α-GAL treatment
Exogenous application of α-GAL was performed 

concurrently in both mature seed- and sprout-flours. 
Approximately, 1,000 g of mature seed- and sprout-
flours were treated with different concentrations of 
α-GAL (0, 50, 100, 200 and 300 GAL units/mL) in 
a final volume of 3,000 mL distilled water, pH 6-7 
(flour:water = 1:3), with a continuous shaking at 
50 rpm in a rotary shaker at 50°C for different time 
points (0, 30, 60, 120 and 180 min). Untreated control 
was treated with distilled water only. Following 
incubation at an indicated time-point, contents of each 
tube were removed and filtered through a Whatman 
No. 1 filter paper. Samples were dried under vacuum 
at 40°C for 4 h, grounded to a fine powder to produce 
α-GAL-treated soybean flour, and quantified for 
RFOs estimation. 

Calorimetric estimation of RFOs
The soluble carbohydrate concentrations of mature 

soybean seed- and sprout-flours were determined 
using an enzyme based Raffinose/Sucrose/D-
Glucose assay kit (Megazyme) as per manufacturer's 
recommendation as described earlier (Kumar et 
al., 2010). It consisted of α-GAL (from A. niger), 
invertase (from yeast) and glucose determination 
reagent i.e. glucose oxidase peroxidase (GOPOD; 
glucose oxidase + peroxidase) for colorimetric 
estimation of sucrose and RFO content. The kit 
is based upon the principle to stepwise hydrolyse 
complex soluble carbohydrates to glucose followed 
by its colorimetric measurement. Soluble sugars such 
as sucrose and RFOs were hydrolysed with α-GAL 
and invertase into D-glucose, D-galactose and 
D-fructose. D-glucose concentration was determined 
using GOPOD reagent. The concentration of RAF, 
STA, VER and other higher homologues of the RFOs 
in flour samples were measured as a group, because 
α-GAL hydrolyses all members of the RFO family. 
Since 1 mol of each of the RFO contains 1 mol of 
D-glucose, the RFO concentrations were presented 
on a molar basis. Briefly, finely ground flour (0.5 ± 
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0.01g) of each sample was treated with 95% ethanol 
(to digest the endogenous enzymes completely) at 
85°C for 20 min, and the final volume was made up 
to 50 mL using sodium acetate buffer (50 mM, pH 
4.5). Digested mixture so obtained was incubated 
at the room temperature for 20 min and vortexed 
to obtain uniform slurry. Subsequently, 2 mL 
chloroform was added to 5 mL slurry obtained, and 
vortexed for 15 s followed by centrifugation at 1,000 
g for 10 min. A volume of 0.2 mL from the aqueous 
phase of the supernatant so obtained was taken in 
three tubes (namely, A, B, and C). A volume of 0.2 
mL sodium acetate buffer (50 mM, pH 4.5), 0.2 mL 
of invertase (8.3 U/mL) and a mixture of invertase + 
α-GAL (invertase 8 U/mL and α-GAL 40 U/mL) was 
added into tubes A, B, and C, respectively. All three 
tubes were incubated at 50°C for 20 min. Reagent 
blank (0.4 mL sodium acetate buffer) and glucose 
control (0.1 mL standard glucose solution, which 
contained 0.556 μmol of glucose + 0.3 mL sodium 
acetate buffer) were also taken simultaneously. 
Subsequently, 3 mL of GOPOD reagent was added 
in all of the tubes and incubated again at 50°C for 20 
min. The glucose concentration for tubes A, B, and 
C and glucose control was determined by measuring 
the change in absorbance of quinoneimine dye at 
510 nm against the reagent blank using a UV/Vis 
Microplate and Cuvette spectrophotometer (Thermo 
ScientificTM MultiskanTM GO). Glucose, sucrose 
and RFOs concentrations were shown in mmol/100 
g flour. The concentrations of glucose, sucrose and 
RFOs were calculated as follows: 

Glucose (mmol/100 g) = ΔA × F × 50
Sucrose (mmol/100 g) = (ΔB-ΔA) × F × 50
RFOs (mmol/100 g) = (ΔC-ΔB) × F × 50

where ΔA, ΔB and ΔC were the absorbance 
of sample plus sodium acetate buffer, sample plus 
invertase and sample plus invertase and α-GAL 
enzyme solution, respectively.

F = Factor to convert from absorbance to μmol 
of glucose

0.556 (μmol of glucose) / GOPOD absorbance 
for 0.556 μmol of glucose

250 = conversion to 50 mL of extract, 200 = 
conversion from 0.5 to 100 g of sample and 
1/1000 = conversion from μmol to mmol.

All enzymatic assays were performed in three 
technical replicates (n = 3) for each sample.

High Performance Liquid Chromatography (HPLC) 
based estimation of RFOs

Sample preparation 
A method for the quantitative extraction of soluble 

sugars from mature seed- and sprout-flours and their 
subsequent recovery from the 80% (v/v) ethanol 
solvent was adopted as outlined earlier (Tahir et al., 
2011; Gangola et al., 2014; Raja et al., 2015), with 
certain modifications. Approximately, 150 mg fine 
grounded flour of each sample was extracted twice 
with 40 mL 80% ethanol-water in a hot water bath 
at 55-60°C with a magnetic stirrer for 45 min. The 
samples were centrifuged for 30 min at 10,000 rpm, 
and the supernatant was collected. The extraction 
step was repeated, and the recovered supernatants 
were pooled. The pooled extract was reduced in 
volume by using a rotary vacuum evaporator at 70°C 
to evaporate the ethanol. The concentrated sugar 
syrup was re-dissolved in 10 mL distilled water, 
and filtered through a 0.45µm Millipore membrane 
(Millipore, Bedford, MA) into a 1.5 mL HPLC vial 
with a rubber slit septum. The samples were then 
ready for injection into HPLC. 

HPLC conditions and Instrumentation
A HPLC system equipped with an auto-sampler, 

a gradient programmer, a solvent pump and a 
refractive index detector (Agilent 1200) was used. 
The chromatographic column used was a Waters 
sugar-pak I column (Part No. WAT085188) with 
an internal dimensions of 6.5 × 300mm, filled with 
micro-particulate size (10 µm) of cation-exchange 
gel in calcium form. The mobile phase consisted 
of 50 mg/mL solution of calcium disodium salt of 
ethylenediaminetetraacetic acid (CaNa2EDTA). 
Operating conditions with a flow rate of 0.2 mL/
min at an ambient temperature were maintained. 
Aliquots (50 µL) of filtered samples were injected 
into the mobile phase of HPLC via an auto-sampler 
to record chromatograms. The detection was done 
by measuring the change in refractive index of 
the column effluent passing through the flow-cell. 
All chromatograms were re-ordered on Agilent 
chemstation software. Authentic commercially 
available sugar standards: glucose, sucrose, RAF, 
STA and VER were dissolved at 5 mg/mL in water, 
immediately prior to HPLC analysis and subjected to 
HPLC in a concentration range of 0-100 µg/mL. A 50 
µL aliquots of these standard solutions were injected 
into the chromatographic system, and the resulting 
peak areas were plotted against concentration for 
the linear calibration curve. Retention times of the 
standards were used to identify the corresponding 
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peaks on the HPLC chromatograms of flour samples. 
Peak area was quantified by Chemstation software 
(Agilent). The relative concentration of individual 
sugar was calculated after superimposing the 
chromatogram of the sample on their corresponding 
standard curve. Individual sugar concentration was 
expressed as mmol per 100 g on a dry weight basis. 
Concentrations of RAF, STA and VER were summed 
to compute the total RFOs concentration. 

Data analysis
The results were expressed as means ± S.D. 

One-way Analysis of Variance (ANOVA) was 
used to analyse the level of statistical significance 
between groups. p < 0.05 was considered statistically 
significant.

Results and discussion

Recent changes in cost of commodity-based 
sources of metabolisable energy (ME) inputs has 
put a tremendous demand on soybean feed- and 
food-products to deliver both protein and ME in 
diet. Being a rich source of total RFOs (Hagely et 
al., 2013), soybean also represents an ideal model 
system for the evaluation and reduction of RFOs in 
other legume flours. In the present work, an attempt 
was made to improve the soybean and its products 
consumption thereof, by lowering their RFOs levels 
within a permissible limit at commercial level. 

Effect of sprouting on soybean RFOs levels at pilot-
scale 

Soybean seeds of commercial variety, ‘JS9560’ 
were sprouted under controlled environmental 
conditions at pilot-scale, with a germination rate of 
~80% (Fig. 1). High quality dried flours was made 
from both mature seeds and sprouts (Fig. 2A inset), 
as per the recommendation for the production of 
soyflour (Gandhi, 2008). The RFOs levels in soybean 
mature seed- and sprout-flours was evaluated and 
presented in Fig. 2. Our calorimetric and HPLC 
results demonstrated that soybean sprouting at a 
pilot-scale resulted in an inherent decline of 76-80% 
in total RFOs in sprout-flour (1.7-2.1 mmol/100 
g dm) in contrast to their corresponding seed 
counterpart (8.41-8.68 mmol/100 g dm). Within 
RFOs, an individual and respective decline of 84% 
(from 1.98 to 0.32 mmol/100 g dm), 79% (from 6.3 
to 1.34 mmol/100 g dm) and 64% (from 0.14 to 0.05 
mmol /100 g dm) in corresponding RAF, STA and 
VER content was observed in sprout-flour (Fig. 2B). 
The data for a typical chromatographic separation 
of sugar standards and corresponding calibration 

curve of each sugar standard is not shown. Notably, 
total RFOs estimation by calorimetric and HPLC 
methods were largely in accord with each other, 
with a perfect positive correlation (r = 1) between 
these two methods. Additionally, a coherent decline 
of 96-98% in sucrose content of sprout-flours in 
comparison to its seed counterpart (from 4.16-5.75 
to 0.1-0.26 mmol/100 g dm) was also observed 
(Supplementary Fig. S2). The observed decrease in 
RFOs as well as sucrose content in soybean sprouts 
was mainly due to the autolysis caused by the 
activation of endogenous α-GAL and invertase (β-D-
fructofuranosidase, EC3.2.1.26), respectively during 
germination process (Kasai, 1976; Kuo, Doehlert 
and Crawford, 1990). Following germination, these 
endogenous hyper-active α-GAL and invertase 
resulted in a potent hydrolysis of their respective 
substrates, α-D-galacto-oligosaccharides and β-D-
fructofuranoside into di- and/ mono-saccharides, 
which could be readily used as an energy or carbon 
source for plant growth (Kasai and Suzuki, 1980). 
Notably, apart from reducing the anti-nutritional 
factors, soybean germination has been also reported 
to significantly improve its nutritional, physico-
chemical and biological properties (Bau et al., 1997, 
2000; Dikshit and Ghadle, 2003; Agrahar-Murugkar 
and Jha, 2009). Thus, soybean germination at an 
industrial-scale could provide an exciting prospect 
of meeting up the soy-food market expectation, 
with a considerable low RFOs content along with 
a concomitant high nutritional value. Of note, there 
was no 100% removal of total RFOs during soybean 
sprouting at pilot-scale, and the residual RFOs levels 
in sprouts still raise a serious concern about its 
consumption, which cannot be ignored. 

Fig. 1. Germination of soybean at pilot-scale. Soybean 
seed germination rate following four hours inbibition in 
water. Results are shown as a means ± SDs from three 
independent experiments (n = 3), with 50 seeds per 
measurements. Inset depicts the representative images of 
temporal sprouts formation during the course of soybean 
germination test. 
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Effect of exogenous α-GAL treatment on RFOs 
levels of soybean seed- and sprout-flours 

Recently, partially purified extracellular α-GAL 
prepared from A. niger has been reported to be 
effective in reducing the RFOs levels in seeds of all 
cultivars of red gram (Cajanus cajan L; Devindra 
and Aruna, ‎2016). In the present work, exogenous 
application of purified α-GAL from A. niger under 
optimum assay conditions (50°C for 3 h at pH 6-7) 
resulted in a significant reduction of up to 98-99% 
(from 8.41-8.68 to 0.14-0.17 mmol/100 g dm) and 
up to 93-96% (from 1.7-2.1 to 0.13-0.07 mmol/100 g 
dm) in total RFOs, with an individual and respective 
decline of 95% (from 1.98 to 0.11 mmol/100 g dm), 
99% (from 6.3 to 0.06 mmol/100 g dm), 100% (from 
0.14 to 0 mmol/100 g dm) and 84% (from 0.32 to 0.05 
mmol/100 g dm), 99%, (from 1.34 to 0.01 mmol/100 
g dm), 100% (from 0.05 to 0 mmol/100 g dm) in RAF, 

STA and VER contents of mature seed- and sprout-
flours, respectively (Fig. 3A and B). The sucrose 
levels observed in each of α-GAL treated sample was 
relatively lower, while that of glucose was relatively 
higher at each corresponding time points as compared 
to their untreated enzyme control counterparts 
(without α-GAL addition; data not shown). The 
observed RFOs reduction with concomitant increase 
in glucose content by exogenous α-GAL addition 
was mainly due to the hydrolysis of α-galactosidic 
linkages of α-D-galacto-oligosaccharides into mono- 
or di-saccharides. The notable and unexpected decline 
in sucrose concentration during α-GAL treatment, 
despite the fact that it was also a by-product of RFOs 
hydrolysis can be explained by the fact that α-GAL 
has also been reported to possess intrinsic invertase 
activity and could cause the hydrolysis of sucrose 
at a site other than its active galactosidase site, 

Fig. 2. Effect of germination on total and individual RFOs components of soybean. 

A. Calorimetric- and B. HPLC-based estimation of total and individual RFOs components (RAF, STA, VER) in soybean 
mature seed- and sprout-flours following three days after germination. Inset shows the soybean flours prepared from the 
mature seeds and sprouts following three days after germination. Representative chromatogram shows the separation of 
ethanol soluble sugar extracts from mature seed- (top) and sprout-flours (bottom). Each sugar was evaluated by peak 
identification with overlapping retention times (in min) of corresponding standard sugar. Data are expressed in terms 
of mmoles per 100 g on a dry weight basis and plotted as bar graph. Numbers over the each bar indicate the percent 
reduction in respective sugar of sugar in sprout-flour relative to its corresponding seed counterpart. Each data represent 
means ± SDs from three independent experiments (n = 3). Asterisks indicate the significant difference in RFOs levels of 
soybean sprout-flour at p < 0.05, when compared with their seed counterpart. RAF, Raffinose; STA, Stachyose and VER, 
Verbascose.
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without any inhibitory effect on hydrolysis rate of its 
substrates, RAF and STA (Slominski, 1994; Brain, 
2013). Notably during the complete assay period, a 
decline of up to 73% (from 8.68 to 2.37 mmol/100 g 
dm), 69% (from 2.1 to 0.65 mmol/100 g dm) in total 
RFOs and up to 67% (from 5.75 to 1.89 mmol/100 
g dm), 54% (from 0.26 to 0.12 mmol/100 g dm) 
in sucrose content, with a concomitant increment 
of up to 481% (from 0.27 to 1.57 mmol/100 g 
dm) and 465% (from 0.23 to 1.3 mmol/100 g dm) 
in glucose content was also observed in untreated 
enzyme controls (without α-GAL addition) of both 
mature seed- and sprout-flours, respectively (Fig. 
3). A similar reduction in total RFOs levels with an 
increased duration of soaking was also reported in a 
previous study (Mulimani and Devendra, 1998). The 
possibility of leaching out of RFOs and sucrose and 
their breakdown by endogenous α-GAL/invertase 
activation during soaking (that usually happens 
during seed germination) cannot be ruled out. 

It is important to note that there may be certain 
other components of soybean (e.g. soluble fibre) 
that also contribute to flatulence, thus the flatulence 
response to α-GAL treated soybean flours should be 
investigated by in vitro as well as in vivo studies. 
In this context, it is worth mentioning that our 
future research is focused on sensory- and safety-
evaluation to measure the acceptability, palatability, 
functionality, storage properties and other nutritional 
aspects of α-GAL treated soybean seed- and sprout-
flours and -products thereof.

Advantages and commercial aspect of α-GAL 
treatment 

An advantage of the use of α-GAL to hydrolyse 
RFOs in flour is that there is no loss of soluble solids 
(vitamins and minerals), wherein RFOs are converted 
to simple digestible sugars, unlike traditional method 
of soaking and boiling of seeds. In literature, there are 
various reports of beneficial nutritional implications 
by reducing the RFOs content in legume flour 
blends upon exogenous supplementation of crude 
α-GAL from either plant, bacterial or fungal sources. 
Addition of α-GAL to lentil, peas, cowpea (from 
A. niger) and chickpea (from Gibberrella fujikuroi) 
caused a decrease in RAF by 61-68%, 41-48%, 
93.3%, 88-92% and STA by 80-85%, 67-91%, 82%, 
82-86%, respectively (Somiari and Balogh, 1993; 
Mulimani et al., 1997; Frias et al., 2003). The use of 
crude α-GAL (from Cladosporium cladosporides, A. 
oryzae and A. terreus) in complete removal of RAF 
and STA in chickpea flours has also been reported 
(Mansour and Khalil, 1998). Crude α-GAL treatment 
(from Streptomyces griseoloalbus) reduced RAF 

by 97.5%, 96.3% and STA by 93.2%, 91.8% in 
horse and green gram flours, respectively (Anisha 
and Prema, 2008). In soybean flour, crude α-GAL 
from germinating guar, Cyamopsis tetragonolobus, 
Cicer arietinum and germinating G. max caused a 
respective reduction in RAF content by 90%, 80% 
and 89.2%, respectively, while a corresponding 
reduction of 92%, 85% and 72.3% in STA content 
was observed (Mulimani et al., 1997; de Fatima 
Viana et al., 2005; Singh and Kayastha, 2013). 
Fungal α-GAL (from A. saitoi, Mortierella vinacea, 
Cyamopsis tetragonolobus, G. fujikuroi, A. oryzae, 
A. terreus and Cladosporium cladosporioides) has 
also been reported for RFOs hydrolysis in soymilk 
and soya (Sugimoto and Buren, 1970; Thananunkul 
et al., 1976; Cruz et al., 1981; Cruz and Park, 1982; 
Shivanna et al., 1989; Mulimani, 1995; Shankar et 
al., 2006; Kotiguda et al., 2007; Ferreira et al., 2011). 
Notably, all of these findings use the laboratory-scale 
preparation of crude α-GAL in seed flours only, 
which were either time consuming, expensive, not 
full-proof enough in complete removal of total RFOs 
or not economically viable for their consideration as 
a commercial commodity. Moreover, authenticity of 
this preparation for their consumption in terms of 
Generally Recogniszed as Safe (GRAS) also raises a 
question mark over their practical utility in daily life. 

α-GAL used in this study was produced by 
controlled fermentation of A. niger which complied 
with FCC and FAO/WHO JECFA recommended 
specifications for food-grade enzymes. This product is 
commercially available with a strict recommendation 
as a dietary supplement only. It is standardised to 
30,000 GAL units/g and can be customised to strength 
from 1,000-30,000 GAL units/g. It is supplied in 
industrial quantity of 20-25 kg pails, with a shelf-life 
of 18 months at 30°C under dark storage that can be 
further extended by storing at <4°C. Being available 
as a dried powder and readily soluble in water, it also 
offers the possibility of blending with other legume 
flours, thereby allowing the RFOs hydrolysis to 
take place upon addition of water during subsequent 
processing steps. In the present work, >95% of total 
RFOs in both soybean mature seed- and sprout-flours 
was reduced by the aforementioned α-GAL, which 
can be procured at a current cost of approximately 
$185/kg at concentration of 10,000 GAL unit/g. At 
an optimum dose of α-GAL (100 GAL unit/mL) in 
a leaching water of three times the volume required 
to saturate the soybean flour (1 kg flour : 3 L water), 
the amount of enzyme required is 30,00,00 GAL 
unit/kg flour, equating the α-GAL cost of $5.55/kg 
of soybean flour. Considering the health benefits and 
value added feed- and food-products that can be made 
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from this RFOs-free soy flour, the incurred α-GAL 
cost is affordable and adds only a marginal cost to 
the soybean processing at a commercial level. Thus, 
α-GAL used in the present work has the potential 
commercial application in feed- and food-industries 
for the production of RFOs-free flours from soybean 
as well as other legumes.

Conclusions 

The present work demonstrated that soybean 
sprouting (~80%) at a pilot-scale resulted in a 
considerable decline of up to 76-80% in total RFOs 
levels. With a prospect of commercial viability, 
exogenous addition of purified food-grade α-GAL at 
100 GAL unit/mL at 50°C for 3 h (pH 6-7) removes 
>95% of total RFOs in both soybean mature seed- 
and sprout-flours. Henceforth, it is concluded that 
sprouting followed by exogenous supplementation 
with food-safe and commercially viable α-GAL 
represents an efficient, effective and economical 
means of reducing the anti-nutritive values with 
concomitant increase in the nutritive value of soy-
flour and -products thereof. 
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